If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+17x-186=0
a = 2; b = 17; c = -186;
Δ = b2-4ac
Δ = 172-4·2·(-186)
Δ = 1777
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-\sqrt{1777}}{2*2}=\frac{-17-\sqrt{1777}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+\sqrt{1777}}{2*2}=\frac{-17+\sqrt{1777}}{4} $
| 16.1+d=22;d= | | 90=2(x+12) | | 9=3/4e;e= | | 1/4x-1/3=7/8+1/2x | | X(0.9)+73481.9=x(1.03) | | 3x+21=x+(1-3x) | | 2^4x=9^x-1 | | X^-5x-7=0 | | (n+5)=90 | | x^2=25/2 | | 4/3x=1- | | 90=(n+5) | | 15(0.25)^x=75 | | 6(4y+7)-8(6y-15)=6 | | Y=x^+6x+3 | | x÷2-8=19 | | -5x^+10x=5 | | -15v-4=23-8v | | 3w+6=5w+2 | | 4x*3=-52 | | 2^7x-1=4 | | 2x-3/2-x+1/3=3x-8/4 | | 256+(15+n)=(256+15)+2 | | 4x*3=-62 | | 5^7x-7=625 | | 4.7+n=2+4.7 | | 0+n=5681 | | 0+n=5,681 | | -11x–245=9x+75 | | 3(x+8)=423x+8=42. | | 7+18=n+7 | | 8p=5 |